Apache HTTP Server Version 2.0
Originally written by
Ralf S. Engelschall <[email protected]>
December 1997
This document supplements the mod_rewrite
reference documentation.
It describes how one can use Apache's mod_rewrite
to solve typical URL-based problems webmasters are usually confronted
with in practice. I give detailed descriptions on how to
solve each problem by configuring URL rewriting rulesets.
mod_rewrite
The Apache module mod_rewrite
is a killer
one, i.e. it is a really sophisticated module which provides
a powerful way to do URL manipulations. With it you can nearly
do all types of URL manipulations you ever dreamed about.
The price you have to pay is to accept complexity, because
mod_rewrite
's major drawback is that it is
not easy to understand and use for the beginner. And even
Apache experts sometimes discover new aspects where
mod_rewrite
can help.
In other words: With mod_rewrite
you either
shoot yourself in the foot the first time and never use it again
or love it for the rest of your life because of its power.
This paper tries to give you a few initial success events to
avoid the first case by presenting already invented solutions
to you.
Here come a lot of practical solutions I've either invented myself or collected from other peoples solutions in the past. Feel free to learn the black magic of URL rewriting from these examples.
[PT]
flag when
additionally using mod_alias
and
mod_userdir
, etc. Or rewriting a ruleset
to fit in .htaccess
context instead
of per-server context. Always try to understand what a
particular ruleset really does before you use it. It
avoid problems.On some webservers there are more than one URL for a resource. Usually there are canonical URLs (which should be actually used and distributed) and those which are just shortcuts, internal ones, etc. Independent of which URL the user supplied with the request he should finally see the canonical one only.
We do an external HTTP redirect for all non-canonical
URLs to fix them in the location view of the Browser and
for all subsequent requests. In the example ruleset below
we replace /~user
by the canonical
/u/user
and fix a missing trailing slash for
/u/user
.
RewriteRule ^/~([^/]+)/?(.*) /u/$1/$2 [R] RewriteRule ^/([uge])/([^/]+)$ /$1/$2/ [R]
RewriteCond %{HTTP_HOST} !^fully\.qualified\.domain\.name [NC] RewriteCond %{HTTP_HOST} !^$ RewriteCond %{SERVER_PORT} !^80$ RewriteRule ^/(.*) http://fully.qualified.domain.name:%{SERVER_PORT}/$1 [L,R] RewriteCond %{HTTP_HOST} !^fully\.qualified\.domain\.name [NC] RewriteCond %{HTTP_HOST} !^$ RewriteRule ^/(.*) http://fully.qualified.domain.name/$1 [L,R]
DocumentRoot
Usually the DocumentRoot
of the webserver directly relates to the URL "/
".
But often this data is not really of top-level priority, it is
perhaps just one entity of a lot of data pools. For instance at
our Intranet sites there are /e/www/
(the homepage for WWW), /e/sww/
(the homepage for
the Intranet) etc. Now because the data of the DocumentRoot
stays at /e/www/
we had
to make sure that all inlined images and other stuff inside this
data pool work for subsequent requests.
We just redirect the URL /
to
/e/www/
. While is seems trivial it is
actually trivial with mod_rewrite
, only.
Because the typical old mechanisms of URL Aliases
(as provides by mod_alias
and friends)
only used prefix matching. With this you cannot
do such a redirection because the DocumentRoot
is a prefix of all URLs. With
mod_rewrite
it is really trivial:
RewriteEngine on RewriteRule ^/$ /e/www/ [R]
Every webmaster can sing a song about the problem of
the trailing slash on URLs referencing directories. If they
are missing, the server dumps an error, because if you say
/~quux/foo
instead of /~quux/foo/
then the server searches for a file named
foo
. And because this file is a directory it
complains. Actually it tries to fix it itself in most of
the cases, but sometimes this mechanism need to be emulated
by you. For instance after you have done a lot of
complicated URL rewritings to CGI scripts etc.
The solution to this subtle problem is to let the server
add the trailing slash automatically. To do this
correctly we have to use an external redirect, so the
browser correctly requests subsequent images etc. If we
only did a internal rewrite, this would only work for the
directory page, but would go wrong when any images are
included into this page with relative URLs, because the
browser would request an in-lined object. For instance, a
request for image.gif
in
/~quux/foo/index.html
would become
/~quux/image.gif
without the external
redirect!
So, to do this trick we write:
RewriteEngine on RewriteBase /~quux/ RewriteRule ^foo$ foo/ [R]
The crazy and lazy can even do the following in the
top-level .htaccess
file of their homedir.
But notice that this creates some processing
overhead.
RewriteEngine on RewriteBase /~quux/ RewriteCond %{REQUEST_FILENAME} -d RewriteRule ^(.+[^/])$ $1/ [R]
We want to create a homogeneous and consistent URL layout over all WWW servers on a Intranet webcluster, i.e. all URLs (per definition server local and thus server dependent!) become actually server independent! What we want is to give the WWW namespace a consistent server-independent layout: no URL should have to include any physically correct target server. The cluster itself should drive us automatically to the physical target host.
First, the knowledge of the target servers come from (distributed) external maps which contain information where our users, groups and entities stay. The have the form
user1 server_of_user1 user2 server_of_user2 : :
We put them into files map.xxx-to-host
.
Second we need to instruct all servers to redirect URLs
of the forms
/u/user/anypath /g/group/anypath /e/entity/anypath
to
http://physical-host/u/user/anypath http://physical-host/g/group/anypath http://physical-host/e/entity/anypath
when the URL is not locally valid to a server. The following ruleset does this for us by the help of the map files (assuming that server0 is a default server which will be used if a user has no entry in the map):
RewriteEngine on RewriteMap user-to-host txt:/path/to/map.user-to-host RewriteMap group-to-host txt:/path/to/map.group-to-host RewriteMap entity-to-host txt:/path/to/map.entity-to-host RewriteRule ^/u/([^/]+)/?(.*) http://${user-to-host:$1|server0}/u/$1/$2 RewriteRule ^/g/([^/]+)/?(.*) http://${group-to-host:$1|server0}/g/$1/$2 RewriteRule ^/e/([^/]+)/?(.*) http://${entity-to-host:$1|server0}/e/$1/$2 RewriteRule ^/([uge])/([^/]+)/?$ /$1/$2/.www/ RewriteRule ^/([uge])/([^/]+)/([^.]+.+) /$1/$2/.www/$3\
Many webmasters have asked for a solution to the following situation: They wanted to redirect just all homedirs on a webserver to another webserver. They usually need such things when establishing a newer webserver which will replace the old one over time.
The solution is trivial with mod_rewrite
.
On the old webserver we just redirect all
/~user/anypath
URLs to
http://newserver/~user/anypath
.
RewriteEngine on RewriteRule ^/~(.+) http://newserver/~$1 [R,L]
Some sites with thousands of users usually use a
structured homedir layout, i.e. each homedir is in a
subdirectory which begins for instance with the first
character of the username. So, /~foo/anypath
is /home/f/foo/.www/anypath
while /~bar/anypath
is
/home/b/bar/.www/anypath
.
We use the following ruleset to expand the tilde URLs into exactly the above layout.
RewriteEngine on RewriteRule ^/~(([a-z])[a-z0-9]+)(.*) /home/$2/$1/.www$3
This really is a hardcore example: a killer application
which heavily uses per-directory
RewriteRules
to get a smooth look and feel
on the Web while its data structure is never touched or
adjusted. Background: net.sw is
my archive of freely available Unix software packages,
which I started to collect in 1992. It is both my hobby
and job to to this, because while I'm studying computer
science I have also worked for many years as a system and
network administrator in my spare time. Every week I need
some sort of software so I created a deep hierarchy of
directories where I stored the packages:
drwxrwxr-x 2 netsw users 512 Aug 3 18:39 Audio/ drwxrwxr-x 2 netsw users 512 Jul 9 14:37 Benchmark/ drwxrwxr-x 12 netsw users 512 Jul 9 00:34 Crypto/ drwxrwxr-x 5 netsw users 512 Jul 9 00:41 Database/ drwxrwxr-x 4 netsw users 512 Jul 30 19:25 Dicts/ drwxrwxr-x 10 netsw users 512 Jul 9 01:54 Graphic/ drwxrwxr-x 5 netsw users 512 Jul 9 01:58 Hackers/ drwxrwxr-x 8 netsw users 512 Jul 9 03:19 InfoSys/ drwxrwxr-x 3 netsw users 512 Jul 9 03:21 Math/ drwxrwxr-x 3 netsw users 512 Jul 9 03:24 Misc/ drwxrwxr-x 9 netsw users 512 Aug 1 16:33 Network/ drwxrwxr-x 2 netsw users 512 Jul 9 05:53 Office/ drwxrwxr-x 7 netsw users 512 Jul 9 09:24 SoftEng/ drwxrwxr-x 7 netsw users 512 Jul 9 12:17 System/ drwxrwxr-x 12 netsw users 512 Aug 3 20:15 Typesetting/ drwxrwxr-x 10 netsw users 512 Jul 9 14:08 X11/
In July 1996 I decided to make this archive public to the world via a nice Web interface. "Nice" means that I wanted to offer an interface where you can browse directly through the archive hierarchy. And "nice" means that I didn't wanted to change anything inside this hierarchy - not even by putting some CGI scripts at the top of it. Why? Because the above structure should be later accessible via FTP as well, and I didn't want any Web or CGI stuff to be there.
The solution has two parts: The first is a set of CGI
scripts which create all the pages at all directory
levels on-the-fly. I put them under
/e/netsw/.www/
as follows:
-rw-r--r-- 1 netsw users 1318 Aug 1 18:10 .wwwacl drwxr-xr-x 18 netsw users 512 Aug 5 15:51 DATA/ -rw-rw-rw- 1 netsw users 372982 Aug 5 16:35 LOGFILE -rw-r--r-- 1 netsw users 659 Aug 4 09:27 TODO -rw-r--r-- 1 netsw users 5697 Aug 1 18:01 netsw-about.html -rwxr-xr-x 1 netsw users 579 Aug 2 10:33 netsw-access.pl -rwxr-xr-x 1 netsw users 1532 Aug 1 17:35 netsw-changes.cgi -rwxr-xr-x 1 netsw users 2866 Aug 5 14:49 netsw-home.cgi drwxr-xr-x 2 netsw users 512 Jul 8 23:47 netsw-img/ -rwxr-xr-x 1 netsw users 24050 Aug 5 15:49 netsw-lsdir.cgi -rwxr-xr-x 1 netsw users 1589 Aug 3 18:43 netsw-search.cgi -rwxr-xr-x 1 netsw users 1885 Aug 1 17:41 netsw-tree.cgi -rw-r--r-- 1 netsw users 234 Jul 30 16:35 netsw-unlimit.lst
The DATA/
subdirectory holds the above
directory structure, i.e. the real
net.sw stuff and gets
automatically updated via rdist
from time to
time. The second part of the problem remains: how to link
these two structures together into one smooth-looking URL
tree? We want to hide the DATA/
directory
from the user while running the appropriate CGI scripts
for the various URLs. Here is the solution: first I put
the following into the per-directory configuration file
in the DocumentRoot
of the server to rewrite the announced URL
/net.sw/
to the internal path
/e/netsw
:
RewriteRule ^net.sw$ net.sw/ [R] RewriteRule ^net.sw/(.*)$ e/netsw/$1
The first rule is for requests which miss the trailing
slash! The second rule does the real thing. And then
comes the killer configuration which stays in the
per-directory config file
/e/netsw/.www/.wwwacl
:
Options ExecCGI FollowSymLinks Includes MultiViews RewriteEngine on # we are reached via /net.sw/ prefix RewriteBase /net.sw/ # first we rewrite the root dir to # the handling cgi script RewriteRule ^$ netsw-home.cgi [L] RewriteRule ^index\.html$ netsw-home.cgi [L] # strip out the subdirs when # the browser requests us from perdir pages RewriteRule ^.+/(netsw-[^/]+/.+)$ $1 [L] # and now break the rewriting for local files RewriteRule ^netsw-home\.cgi.* - [L] RewriteRule ^netsw-changes\.cgi.* - [L] RewriteRule ^netsw-search\.cgi.* - [L] RewriteRule ^netsw-tree\.cgi$ - [L] RewriteRule ^netsw-about\.html$ - [L] RewriteRule ^netsw-img/.*$ - [L] # anything else is a subdir which gets handled # by another cgi script RewriteRule !^netsw-lsdir\.cgi.* - [C] RewriteRule (.*) netsw-lsdir.cgi/$1
Some hints for interpretation:
L
(last) flag and no
substitution field ('-
') in the forth part!
(not) character and
the C
(chain) flag at the first rule
in the last partmod_imap
When switching from the NCSA webserver to the more
modern Apache webserver a lot of people want a smooth
transition. So they want pages which use their old NCSA
imagemap
program to work under Apache with the
modern mod_imap
. The problem is that there
are a lot of hyperlinks around which reference the
imagemap
program via
/cgi-bin/imagemap/path/to/page.map
. Under
Apache this has to read just
/path/to/page.map
.
We use a global rule to remove the prefix on-the-fly for all requests:
RewriteEngine on RewriteRule ^/cgi-bin/imagemap(.*) $1 [PT]
Sometimes it is necessary to let the webserver search for pages in more than one directory. Here MultiViews or other techniques cannot help.
We program a explicit ruleset which searches for the files in the directories.
RewriteEngine on # first try to find it in custom/... # ...and if found stop and be happy: RewriteCond /your/docroot/dir1/%{REQUEST_FILENAME} -f RewriteRule ^(.+) /your/docroot/dir1/$1 [L] # second try to find it in pub/... # ...and if found stop and be happy: RewriteCond /your/docroot/dir2/%{REQUEST_FILENAME} -f RewriteRule ^(.+) /your/docroot/dir2/$1 [L] # else go on for other Alias or ScriptAlias directives, # etc. RewriteRule ^(.+) - [PT]
Perhaps you want to keep status information between requests and use the URL to encode it. But you don't want to use a CGI wrapper for all pages just to strip out this information.
We use a rewrite rule to strip out the status information
and remember it via an environment variable which can be
later dereferenced from within XSSI or CGI. This way a
URL /foo/S=java/bar/
gets translated to
/foo/bar/
and the environment variable named
STATUS
is set to the value "java".
RewriteEngine on RewriteRule ^(.*)/S=([^/]+)/(.*) $1/$3 [E=STATUS:$2]
Assume that you want to provide
www.username.host.domain.com
for the homepage of username via just DNS A records to the
same machine and without any virtualhosts on this
machine.
For HTTP/1.0 requests there is no solution, but for
HTTP/1.1 requests which contain a Host: HTTP header we
can use the following ruleset to rewrite
http://www.username.host.com/anypath
internally to /home/username/anypath
:
RewriteEngine on RewriteCond %{HTTP_HOST} ^www\.[^.]+\.host\.com$ RewriteRule ^(.+) %{HTTP_HOST}$1 [C] RewriteRule ^www\.([^.]+)\.host\.com(.*) /home/$1$2
We want to redirect homedir URLs to another webserver
www.somewhere.com
when the requesting user
does not stay in the local domain
ourdomain.com
. This is sometimes used in
virtual host contexts.
Just a rewrite condition:
RewriteEngine on RewriteCond %{REMOTE_HOST} !^.+\.ourdomain\.com$ RewriteRule ^(/~.+) http://www.somewhere.com/$1 [R,L]
A typical FAQ about URL rewriting is how to redirect
failing requests on webserver A to webserver B. Usually
this is done via ErrorDocument
CGI-scripts in Perl, but
there is also a mod_rewrite
solution.
But notice that this performs more poorly than using an
ErrorDocument
CGI-script!
The first solution has the best performance but less flexibility, and is less error safe:
RewriteEngine on RewriteCond /your/docroot/%{REQUEST_FILENAME} !-f RewriteRule ^(.+) http://webserverB.dom/$1
The problem here is that this will only work for pages
inside the DocumentRoot
. While you can add more
Conditions (for instance to also handle homedirs, etc.)
there is better variant:
RewriteEngine on RewriteCond %{REQUEST_URI} !-U RewriteRule ^(.+) http://webserverB.dom/$1
This uses the URL look-ahead feature of mod_rewrite
.
The result is that this will work for all types of URLs
and is a safe way. But it does a performance impact on
the webserver, because for every request there is one
more internal subrequest. So, if your webserver runs on a
powerful CPU, use this one. If it is a slow machine, use
the first approach or better a ErrorDocument
CGI-script.
Sometimes we need more control (concerning the
character escaping mechanism) of URLs on redirects.
Usually the Apache kernels URL escape function also
escapes anchors, i.e. URLs like "url#anchor
".
You cannot use this directly on redirects with
mod_rewrite
because the
uri_escape()
function of Apache
would also escape the hash character.
How can we redirect to such a URL?
We have to use a kludge by the use of a NPH-CGI script
which does the redirect itself. Because here no escaping
is done (NPH=non-parseable headers). First we introduce a
new URL scheme xredirect:
by the following
per-server config-line (should be one of the last rewrite
rules):
RewriteRule ^xredirect:(.+) /path/to/nph-xredirect.cgi/$1 \ [T=application/x-httpd-cgi,L]
This forces all URLs prefixed with
xredirect:
to be piped through the
nph-xredirect.cgi
program. And this program
just looks like:
#!/path/to/perl ## ## nph-xredirect.cgi -- NPH/CGI script for extended redirects ## Copyright (c) 1997 Ralf S. Engelschall, All Rights Reserved. ## $| = 1; $url = $ENV{'PATH_INFO'}; print "HTTP/1.0 302 Moved Temporarily\n"; print "Server: $ENV{'SERVER_SOFTWARE'}\n"; print "Location: $url\n"; print "Content-type: text/html\n"; print "\n"; print "<html>\n"; print "<head>\n"; print "<title>302 Moved Temporarily (EXTENDED)</title>\n"; print "</head>\n"; print "<body>\n"; print "<h1>Moved Temporarily (EXTENDED)</h1>\n"; print "The document has moved <a HREF=\"$url\">here</a>.<p>\n"; print "</body>\n"; print "</html>\n"; ##EOF##
This provides you with the functionality to do
redirects to all URL schemes, i.e. including the one
which are not directly accepted by mod_rewrite
.
For instance you can now also redirect to
news:newsgroup
via
RewriteRule ^anyurl xredirect:news:newsgroup
[R]
or
[R,L]
to the above rule because the
xredirect:
need to be expanded later
by our special "pipe through" rule above.Do you know the great CPAN (Comprehensive Perl Archive
Network) under http://www.perl.com/CPAN?
This does a redirect to one of several FTP servers around
the world which carry a CPAN mirror and is approximately
near the location of the requesting client. Actually this
can be called an FTP access multiplexing service. While
CPAN runs via CGI scripts, how can a similar approach
implemented via mod_rewrite
?
First we notice that from version 3.0.0
mod_rewrite
can
also use the "ftp:
" scheme on redirects.
And second, the location approximation can be done by a
RewriteMap
over the top-level domain of the client.
With a tricky chained ruleset we can use this top-level
domain as a key to our multiplexing map.
RewriteEngine on RewriteMap multiplex txt:/path/to/map.cxan RewriteRule ^/CxAN/(.*) %{REMOTE_HOST}::$1 [C] RewriteRule ^.+\.([a-zA-Z]+)::(.*)$ ${multiplex:$1|ftp.default.dom}$2 [R,L]
## ## map.cxan -- Multiplexing Map for CxAN ## de ftp://ftp.cxan.de/CxAN/ uk ftp://ftp.cxan.uk/CxAN/ com ftp://ftp.cxan.com/CxAN/ : ##EOF##
When tricks like time-dependent content should happen a
lot of webmasters still use CGI scripts which do for
instance redirects to specialized pages. How can it be done
via mod_rewrite
?
There are a lot of variables named TIME_xxx
for rewrite conditions. In conjunction with the special
lexicographic comparison patterns <STRING
,
>STRING
and =STRING
we can
do time-dependent redirects:
RewriteEngine on RewriteCond %{TIME_HOUR}%{TIME_MIN} >0700 RewriteCond %{TIME_HOUR}%{TIME_MIN} <1900 RewriteRule ^foo\.html$ foo.day.html RewriteRule ^foo\.html$ foo.night.html
This provides the content of foo.day.html
under the URL foo.html
from
07:00-19:00
and at the remaining time the
contents of foo.night.html
. Just a nice
feature for a homepage...
How can we make URLs backward compatible (still
existing virtually) after migrating document.YYYY
to document.XXXX
, e.g. after translating a
bunch of .html
files to .phtml
?
We just rewrite the name to its basename and test for existence of the new extension. If it exists, we take that name, else we rewrite the URL to its original state.
# backward compatibility ruleset for # rewriting document.html to document.phtml # when and only when document.phtml exists # but no longer document.html RewriteEngine on RewriteBase /~quux/ # parse out basename, but remember the fact RewriteRule ^(.*)\.html$ $1 [C,E=WasHTML:yes] # rewrite to document.phtml if exists RewriteCond %{REQUEST_FILENAME}.phtml -f RewriteRule ^(.*)$ $1.phtml [S=1] # else reverse the previous basename cutout RewriteCond %{ENV:WasHTML} ^yes$ RewriteRule ^(.*)$ $1.html
Assume we have recently renamed the page
foo.html
to bar.html
and now want
to provide the old URL for backward compatibility. Actually
we want that users of the old URL even not recognize that
the pages was renamed.
We rewrite the old URL to the new one internally via the following rule:
RewriteEngine on RewriteBase /~quux/ RewriteRule ^foo\.html$ bar.html
Assume again that we have recently renamed the page
foo.html
to bar.html
and now want
to provide the old URL for backward compatibility. But this
time we want that the users of the old URL get hinted to
the new one, i.e. their browsers Location field should
change, too.
We force a HTTP redirect to the new URL which leads to a change of the browsers and thus the users view:
RewriteEngine on RewriteBase /~quux/ RewriteRule ^foo\.html$ bar.html [R]
At least for important top-level pages it is sometimes necessary to provide the optimum of browser dependent content, i.e. one has to provide a maximum version for the latest Netscape variants, a minimum version for the Lynx browsers and a average feature version for all others.
We cannot use content negotiation because the browsers do
not provide their type in that form. Instead we have to
act on the HTTP header "User-Agent". The following condig
does the following: If the HTTP header "User-Agent"
begins with "Mozilla/3", the page foo.html
is rewritten to foo.NS.html
and and the
rewriting stops. If the browser is "Lynx" or "Mozilla" of
version 1 or 2 the URL becomes foo.20.html
.
All other browsers receive page foo.32.html
.
This is done by the following ruleset:
RewriteCond %{HTTP_USER_AGENT} ^Mozilla/3.* RewriteRule ^foo\.html$ foo.NS.html [L] RewriteCond %{HTTP_USER_AGENT} ^Lynx/.* [OR] RewriteCond %{HTTP_USER_AGENT} ^Mozilla/[12].* RewriteRule ^foo\.html$ foo.20.html [L] RewriteRule ^foo\.html$ foo.32.html [L]
Assume there are nice webpages on remote hosts we want
to bring into our namespace. For FTP servers we would use
the mirror
program which actually maintains an
explicit up-to-date copy of the remote data on the local
machine. For a webserver we could use the program
webcopy
which acts similar via HTTP. But both
techniques have one major drawback: The local copy is
always just as up-to-date as often we run the program. It
would be much better if the mirror is not a static one we
have to establish explicitly. Instead we want a dynamic
mirror with data which gets updated automatically when
there is need (updated data on the remote host).
To provide this feature we map the remote webpage or even
the complete remote webarea to our namespace by the use
of the Proxy Throughput feature
(flag [P]
):
RewriteEngine on RewriteBase /~quux/ RewriteRule ^hotsheet/(.*)$ http://www.tstimpreso.com/hotsheet/$1 [P]
RewriteEngine on RewriteBase /~quux/ RewriteRule ^usa-news\.html$ http://www.quux-corp.com/news/index.html [P]
RewriteEngine on RewriteCond /mirror/of/remotesite/$1 -U RewriteRule ^http://www\.remotesite\.com/(.*)$ /mirror/of/remotesite/$1
This is a tricky way of virtually running a corporate
(external) Internet webserver
(www.quux-corp.dom
), while actually keeping
and maintaining its data on a (internal) Intranet webserver
(www2.quux-corp.dom
) which is protected by a
firewall. The trick is that on the external webserver we
retrieve the requested data on-the-fly from the internal
one.
First, we have to make sure that our firewall still protects the internal webserver and that only the external webserver is allowed to retrieve data from it. For a packet-filtering firewall we could for instance configure a firewall ruleset like the following:
ALLOW Host www.quux-corp.dom Port >1024 --> Host www2.quux-corp.dom Port 80 DENY Host * Port * --> Host www2.quux-corp.dom Port 80
Just adjust it to your actual configuration syntax.
Now we can establish the mod_rewrite
rules which request the missing data in the background
through the proxy throughput feature:
RewriteRule ^/~([^/]+)/?(.*) /home/$1/.www/$2 RewriteCond %{REQUEST_FILENAME} !-f RewriteCond %{REQUEST_FILENAME} !-d RewriteRule ^/home/([^/]+)/.www/?(.*) http://www2.quux-corp.dom/~$1/pub/$2 [P]
Suppose we want to load balance the traffic to
www.foo.com
over www[0-5].foo.com
(a total of 6 servers). How can this be done?
There are a lot of possible solutions for this problem.
We will discuss first a commonly known DNS-based variant
and then the special one with mod_rewrite
:
The simplest method for load-balancing is to use
the DNS round-robin feature of BIND
.
Here you just configure www[0-9].foo.com
as usual in your DNS with A(address) records, e.g.
www0 IN A 1.2.3.1 www1 IN A 1.2.3.2 www2 IN A 1.2.3.3 www3 IN A 1.2.3.4 www4 IN A 1.2.3.5 www5 IN A 1.2.3.6
Then you additionally add the following entry:
www IN CNAME www0.foo.com. IN CNAME www1.foo.com. IN CNAME www2.foo.com. IN CNAME www3.foo.com. IN CNAME www4.foo.com. IN CNAME www5.foo.com. IN CNAME www6.foo.com.
Notice that this seems wrong, but is actually an
intended feature of BIND
and can be used
in this way. However, now when www.foo.com
gets
resolved, BIND
gives out www0-www6
- but in a slightly permutated/rotated order every time.
This way the clients are spread over the various
servers. But notice that this not a perfect load
balancing scheme, because DNS resolve information
gets cached by the other nameservers on the net, so
once a client has resolved www.foo.com
to a particular wwwN.foo.com
, all
subsequent requests also go to this particular name
wwwN.foo.com
. But the final result is
ok, because the total sum of the requests are really
spread over the various webservers.
A sophisticated DNS-based method for
load-balancing is to use the program
lbnamed
which can be found at
http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html.
It is a Perl 5 program in conjunction with auxilliary
tools which provides a real load-balancing for
DNS.
In this variant we use mod_rewrite
and its proxy throughput feature. First we dedicate
www0.foo.com
to be actually
www.foo.com
by using a single
www IN CNAME www0.foo.com.
entry in the DNS. Then we convert
www0.foo.com
to a proxy-only server,
i.e. we configure this machine so all arriving URLs
are just pushed through the internal proxy to one of
the 5 other servers (www1-www5
). To
accomplish this we first establish a ruleset which
contacts a load balancing script lb.pl
for all URLs.
RewriteEngine on RewriteMap lb prg:/path/to/lb.pl RewriteRule ^/(.+)$ ${lb:$1} [P,L]
Then we write lb.pl
:
#!/path/to/perl ## ## lb.pl -- load balancing script ## $| = 1; $name = "www"; # the hostname base $first = 1; # the first server (not 0 here, because 0 is myself) $last = 5; # the last server in the round-robin $domain = "foo.dom"; # the domainname $cnt = 0; while (<STDIN>) { $cnt = (($cnt+1) % ($last+1-$first)); $server = sprintf("%s%d.%s", $name, $cnt+$first, $domain); print "http://$server/$_"; } ##EOF##
www0.foo.com
still is overloaded? The
answer is yes, it is overloaded, but with plain proxy
throughput requests, only! All SSI, CGI, ePerl, etc.
processing is completely done on the other machines.
This is the essential point.There is a hardware solution available, too. Cisco has a beast called LocalDirector which does a load balancing at the TCP/IP level. Actually this is some sort of a circuit level gateway in front of a webcluster. If you have enough money and really need a solution with high performance, use this one.
On the net there are a lot of nifty CGI programs. But
their usage is usually boring, so a lot of webmaster
don't use them. Even Apache's Action handler feature for
MIME-types is only appropriate when the CGI programs
don't need special URLs (actually PATH_INFO
and QUERY_STRINGS
) as their input. First,
let us configure a new file type with extension
.scgi
(for secure CGI) which will be processed
by the popular cgiwrap
program. The problem
here is that for instance we use a Homogeneous URL Layout
(see above) a file inside the user homedirs has the URL
/u/user/foo/bar.scgi
. But
cgiwrap
needs the URL in the form
/~user/foo/bar.scgi/
. The following rule
solves the problem:
RewriteRule ^/[uge]/([^/]+)/\.www/(.+)\.scgi(.*) ... ... /internal/cgi/user/cgiwrap/~$1/$2.scgi$3 [NS,T=application/x-http-cgi]
Or assume we have some more nifty programs:
wwwlog
(which displays the
access.log
for a URL subtree and
wwwidx
(which runs Glimpse on a URL
subtree). We have to provide the URL area to these
programs so they know on which area they have to act on.
But usually this ugly, because they are all the times
still requested from that areas, i.e. typically we would
run the swwidx
program from within
/u/user/foo/
via hyperlink to
/internal/cgi/user/swwidx?i=/u/user/foo/
which is ugly. Because we have to hard-code both the location of the area and the location of the CGI inside the hyperlink. When we have to reorganize the area, we spend a lot of time changing the various hyperlinks.
The solution here is to provide a special new URL format which automatically leads to the proper CGI invocation. We configure the following:
RewriteRule ^/([uge])/([^/]+)(/?.*)/\* /internal/cgi/user/wwwidx?i=/$1/$2$3/ RewriteRule ^/([uge])/([^/]+)(/?.*):log /internal/cgi/user/wwwlog?f=/$1/$2$3
Now the hyperlink to search at
/u/user/foo/
reads only
HREF="*"
which internally gets automatically transformed to
/internal/cgi/user/wwwidx?i=/u/user/foo/
The same approach leads to an invocation for the
access log CGI program when the hyperlink
:log
gets used.
How can we transform a static page
foo.html
into a dynamic variant
foo.cgi
in a seamless way, i.e. without notice
by the browser/user.
We just rewrite the URL to the CGI-script and force the
correct MIME-type so it gets really run as a CGI-script.
This way a request to /~quux/foo.html
internally leads to the invocation of
/~quux/foo.cgi
.
RewriteEngine on RewriteBase /~quux/ RewriteRule ^foo\.html$ foo.cgi [T=application/x-httpd-cgi]
Here comes a really esoteric feature: Dynamically generated but statically served pages, i.e. pages should be delivered as pure static pages (read from the filesystem and just passed through), but they have to be generated dynamically by the webserver if missing. This way you can have CGI-generated pages which are statically served unless one (or a cronjob) removes the static contents. Then the contents gets refreshed.
RewriteCond %{REQUEST_FILENAME} !-s RewriteRule ^page\.html$ page.cgi [T=application/x-httpd-cgi,L]
Here a request to page.html
leads to a
internal run of a corresponding page.cgi
if
page.html
is still missing or has filesize
null. The trick here is that page.cgi
is a
usual CGI script which (additionally to its STDOUT
)
writes its output to the file page.html
.
Once it was run, the server sends out the data of
page.html
. When the webmaster wants to force
a refresh the contents, he just removes
page.html
(usually done by a cronjob).
Wouldn't it be nice while creating a complex webpage if the webbrowser would automatically refresh the page every time we write a new version from within our editor? Impossible?
No! We just combine the MIME multipart feature, the
webserver NPH feature and the URL manipulation power of
mod_rewrite
. First, we establish a new
URL feature: Adding just :refresh
to any
URL causes this to be refreshed every time it gets
updated on the filesystem.
RewriteRule ^(/[uge]/[^/]+/?.*):refresh /internal/cgi/apache/nph-refresh?f=$1
Now when we reference the URL
/u/foo/bar/page.html:refresh
this leads to the internal invocation of the URL
/internal/cgi/apache/nph-refresh?f=/u/foo/bar/page.html
The only missing part is the NPH-CGI script. Although one would usually say "left as an exercise to the reader" ;-) I will provide this, too.
#!/sw/bin/perl ## ## nph-refresh -- NPH/CGI script for auto refreshing pages ## Copyright (c) 1997 Ralf S. Engelschall, All Rights Reserved. ## $| = 1; # split the QUERY_STRING variable @pairs = split(/&/, $ENV{'QUERY_STRING'}); foreach $pair (@pairs) { ($name, $value) = split(/=/, $pair); $name =~ tr/A-Z/a-z/; $name = 'QS_' . $name; $value =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg; eval "\$$name = \"$value\""; } $QS_s = 1 if ($QS_s eq ''); $QS_n = 3600 if ($QS_n eq ''); if ($QS_f eq '') { print "HTTP/1.0 200 OK\n"; print "Content-type: text/html\n\n"; print "<b>ERROR</b>: No file given\n"; exit(0); } if (! -f $QS_f) { print "HTTP/1.0 200 OK\n"; print "Content-type: text/html\n\n"; print "<b>ERROR</b>: File $QS_f not found\n"; exit(0); } sub print_http_headers_multipart_begin { print "HTTP/1.0 200 OK\n"; $bound = "ThisRandomString12345"; print "Content-type: multipart/x-mixed-replace;boundary=$bound\n"; &print_http_headers_multipart_next; } sub print_http_headers_multipart_next { print "\n--$bound\n"; } sub print_http_headers_multipart_end { print "\n--$bound--\n"; } sub displayhtml { local($buffer) = @_; $len = length($buffer); print "Content-type: text/html\n"; print "Content-length: $len\n\n"; print $buffer; } sub readfile { local($file) = @_; local(*FP, $size, $buffer, $bytes); ($x, $x, $x, $x, $x, $x, $x, $size) = stat($file); $size = sprintf("%d", $size); open(FP, "<$file"); $bytes = sysread(FP, $buffer, $size); close(FP); return $buffer; } $buffer = &readfile($QS_f); &print_http_headers_multipart_begin; &displayhtml($buffer); sub mystat { local($file) = $_[0]; local($time); ($x, $x, $x, $x, $x, $x, $x, $x, $x, $mtime) = stat($file); return $mtime; } $mtimeL = &mystat($QS_f); $mtime = $mtime; for ($n = 0; $n < $QS_n; $n++) { while (1) { $mtime = &mystat($QS_f); if ($mtime ne $mtimeL) { $mtimeL = $mtime; sleep(2); $buffer = &readfile($QS_f); &print_http_headers_multipart_next; &displayhtml($buffer); sleep(5); $mtimeL = &mystat($QS_f); last; } sleep($QS_s); } } &print_http_headers_multipart_end; exit(0); ##EOF##
The <VirtualHost>
feature of Apache is nice
and works great when you just have a few dozens
virtual hosts. But when you are an ISP and have hundreds of
virtual hosts to provide this feature is not the best
choice.
To provide this feature we map the remote webpage or even
the complete remote webarea to our namespace by the use
of the Proxy Throughput feature (flag [P]
):
## ## vhost.map ## www.vhost1.dom:80 /path/to/docroot/vhost1 www.vhost2.dom:80 /path/to/docroot/vhost2 : www.vhostN.dom:80 /path/to/docroot/vhostN
## ## httpd.conf ## : # use the canonical hostname on redirects, etc. UseCanonicalName on : # add the virtual host in front of the CLF-format CustomLog /path/to/access_log "%{VHOST}e %h %l %u %t \"%r\" %>s %b" : # enable the rewriting engine in the main server RewriteEngine on # define two maps: one for fixing the URL and one which defines # the available virtual hosts with their corresponding # DocumentRoot. RewriteMap lowercase int:tolower RewriteMap vhost txt:/path/to/vhost.map # Now do the actual virtual host mapping # via a huge and complicated single rule: # # 1. make sure we don't map for common locations RewriteCond %{REQUEST_URL} !^/commonurl1/.* RewriteCond %{REQUEST_URL} !^/commonurl2/.* : RewriteCond %{REQUEST_URL} !^/commonurlN/.* # # 2. make sure we have a Host header, because # currently our approach only supports # virtual hosting through this header RewriteCond %{HTTP_HOST} !^$ # # 3. lowercase the hostname RewriteCond ${lowercase:%{HTTP_HOST}|NONE} ^(.+)$ # # 4. lookup this hostname in vhost.map and # remember it only when it is a path # (and not "NONE" from above) RewriteCond ${vhost:%1} ^(/.*)$ # # 5. finally we can map the URL to its docroot location # and remember the virtual host for logging puposes RewriteRule ^/(.*)$ %1/$1 [E=VHOST:${lowercase:%{HTTP_HOST}}] :
How can we block a really annoying robot from
retrieving pages of a specific webarea? A
/robots.txt
file containing entries of the
"Robot Exclusion Protocol" is typically not enough to get
rid of such a robot.
We use a ruleset which forbids the URLs of the webarea
/~quux/foo/arc/
(perhaps a very deep
directory indexed area where the robot traversal would
create big server load). We have to make sure that we
forbid access only to the particular robot, i.e. just
forbidding the host where the robot runs is not enough.
This would block users from this host, too. We accomplish
this by also matching the User-Agent HTTP header
information.
RewriteCond %{HTTP_USER_AGENT} ^NameOfBadRobot.* RewriteCond %{REMOTE_ADDR} ^123\.45\.67\.[8-9]$ RewriteRule ^/~quux/foo/arc/.+ - [F]
Assume we have under http://www.quux-corp.de/~quux/
some pages with inlined GIF graphics. These graphics are
nice, so others directly incorporate them via hyperlinks to
their pages. We don't like this practice because it adds
useless traffic to our server.
While we cannot 100% protect the images from inclusion, we can at least restrict the cases where the browser sends a HTTP Referer header.
RewriteCond %{HTTP_REFERER} !^$ RewriteCond %{HTTP_REFERER} !^http://www.quux-corp.de/~quux/.*$ [NC] RewriteRule .*\.gif$ - [F]
RewriteCond %{HTTP_REFERER} !^$ RewriteCond %{HTTP_REFERER} !.*/foo-with-gif\.html$ RewriteRule ^inlined-in-foo\.gif$ - [F]
How can we forbid a list of externally configured hosts from using our server?
For Apache >= 1.3b6:
RewriteEngine on RewriteMap hosts-deny txt:/path/to/hosts.deny RewriteCond ${hosts-deny:%{REMOTE_HOST}|NOT-FOUND} !=NOT-FOUND [OR] RewriteCond ${hosts-deny:%{REMOTE_ADDR}|NOT-FOUND} !=NOT-FOUND RewriteRule ^/.* - [F]
For Apache <= 1.3b6:
RewriteEngine on RewriteMap hosts-deny txt:/path/to/hosts.deny RewriteRule ^/(.*)$ ${hosts-deny:%{REMOTE_HOST}|NOT-FOUND}/$1 RewriteRule !^NOT-FOUND/.* - [F] RewriteRule ^NOT-FOUND/(.*)$ ${hosts-deny:%{REMOTE_ADDR}|NOT-FOUND}/$1 RewriteRule !^NOT-FOUND/.* - [F] RewriteRule ^NOT-FOUND/(.*)$ /$1
## ## hosts.deny ## ## ATTENTION! This is a map, not a list, even when we treat it as such. ## mod_rewrite parses it for key/value pairs, so at least a ## dummy value "-" must be present for each entry. ## 193.102.180.41 - bsdti1.sdm.de - 192.76.162.40 -
How can we forbid a certain host or even a user of a special host from using the Apache proxy?
We first have to make sure mod_rewrite
is below(!) mod_proxy
in the Configuration
file when compiling the Apache webserver. This way it gets
called before mod_proxy
. Then we
configure the following for a host-dependent deny...
RewriteCond %{REMOTE_HOST} ^badhost\.mydomain\.com$ RewriteRule !^http://[^/.]\.mydomain.com.* - [F]
...and this one for a user@host-dependent deny:
RewriteCond %{REMOTE_IDENT}@%{REMOTE_HOST} ^badguy@badhost\.mydomain\.com$ RewriteRule !^http://[^/.]\.mydomain.com.* - [F]
Sometimes a very special authentication is needed, for
instance a authentication which checks for a set of
explicitly configured users. Only these should receive
access and without explicit prompting (which would occur
when using the Basic Auth via mod_auth
).
We use a list of rewrite conditions to exclude all except our friends:
RewriteCond %{REMOTE_IDENT}@%{REMOTE_HOST} !^[email protected]\.com$ RewriteCond %{REMOTE_IDENT}@%{REMOTE_HOST} !^friend2@client2.quux-corp\.com$ RewriteCond %{REMOTE_IDENT}@%{REMOTE_HOST} !^friend3@client3.quux-corp\.com$ RewriteRule ^/~quux/only-for-friends/ - [F]
How can we program a flexible URL Deflector which acts on the "Referer" HTTP header and can be configured with as many referring pages as we like?
Use the following really tricky ruleset...
RewriteMap deflector txt:/path/to/deflector.map RewriteCond %{HTTP_REFERER} !="" RewriteCond ${deflector:%{HTTP_REFERER}} ^-$ RewriteRule ^.* %{HTTP_REFERER} [R,L] RewriteCond %{HTTP_REFERER} !="" RewriteCond ${deflector:%{HTTP_REFERER}|NOT-FOUND} !=NOT-FOUND RewriteRule ^.* ${deflector:%{HTTP_REFERER}} [R,L]
... in conjunction with a corresponding rewrite map:
## ## deflector.map ## http://www.badguys.com/bad/index.html - http://www.badguys.com/bad/index2.html - http://www.badguys.com/bad/index3.html http://somewhere.com/
This automatically redirects the request back to the
referring page (when "-
" is used as the value
in the map) or to a specific URL (when an URL is specified
in the map as the second argument).
A FAQ: How can we solve the FOO/BAR/QUUX/etc.
problem? There seems no solution by the use of
mod_rewrite
...
Use an external RewriteMap
, i.e. a program which acts
like a RewriteMap
. It is run once on startup of Apache
receives the requested URLs on STDIN
and has
to put the resulting (usually rewritten) URL on
STDOUT
(same order!).
RewriteEngine on RewriteMap quux-map prg:/path/to/map.quux.pl RewriteRule ^/~quux/(.*)$ /~quux/${quux-map:$1}
#!/path/to/perl # disable buffered I/O which would lead # to deadloops for the Apache server $| = 1; # read URLs one per line from stdin and # generate substitution URL on stdout while (<>) { s|^foo/|bar/|; print $_; }
This is a demonstration-only example and just rewrites
all URLs /~quux/foo/...
to
/~quux/bar/...
. Actually you can program
whatever you like. But notice that while such maps can be
used also by an average user, only the
system administrator can define it.